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Object-Oriented Software Measures 

Abstract: This paper provides an overview of the merging of a paradigm and 
a process, the object-oriented paradigm and the software product 
measurement process. A taxonomy of object-oriented software measures is 
created, and existing object-oriented software measures are enumerated, 
evaluated, and placed in taxa. This report includes an extensive bibliography 
of the current object-oriented measures that apply to the design and 
implementation phases of a software project. Examples of computation of 
representative measures are included. 

1. Introduction 

It is quite clear that measurement is necessary for the software development process to 
be successful. In addition, the path to controlling and improving the software design 
process may lie in the use of an object-oriented design approach. The recent movement 
toward object-oriented technology must also include the processes that control object- 
oriented development, namely software measures. Tom DeMarco summarizes the 
essence of these sentiments by stating, "You cannot control what you cannot measure" 
[DeMarco 87]. Measurement encompasses many aspects of the software life cycle. The 
emphasis of this document is on the design and implementation phases of an object- 
oriented approach. This report investigates the software product measures that exist in 
these phases and develops a taxonomy for these measures. 

1.1. Reasonable Characteristics of a Measure 

A measure is a numerical value computed from a collection of data. Before examining 
the details of software measures (often called metrics), let's consider which properties of 
a measure, in general, that are reasonable. A measure should have the following 
characteristics to be of value to us: 

•The measure should be robust. The calculation of the measure is 
repeatable and the result is insensitive to minor changes in environment, tool, 
or observer. The measure is precise, and the process of collecting the data for 
the measure is objective. 
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•The measure should suggest a norm, scale, and bounds. There is a scale 
upon which we can make a comparison of two measures of the same type, and 
so conclude which of the two measures is more desirable. For example, there 
is a realistic lower bound, such as zero for number of errors. 

•The measure should be meaningful. The measure relates to the product, 
and there should be a rationale for collecting data for the measure. 

Often, one measure alone is insufficient to measure the features of the design paradigm 
or to accomplish the objectives of the software project. This suggests that a collection or 
suite of measures is needed to provide the range and diversity necessary to achieve the 
software project's objectives. A suite of measures adds an additional consideration. 

•A suite of measures should be consistent. If a smaller value is better for 
one type of measure in the suite, then smaller is better for all other types of 
measures in the suite. 

In addition, the data gathering process that produced the data from which a measure is 
computed should be carefully orchestrated. Data gathering without a reason is not 
likely to produce meaningful results. Although data acquisition is not the topic of this 
report, data gathering issues should not be ignored. Fenton [Fenton 91] covers this 
topic quite well. 

1.2. Overview of Software Metrics 

Many people are reluctant to use the term metric in reference to software. The 
American Heritage Dictionary (Mifflin, 1991) defines a metric as: 

1. designating, pertaining to the metric system, or 

2. a standard of measurement. 

Mathematicians define a metric more rigorously; they use the term to apply to a real- 
valued set function that measures the distance (as defined by the metric) between two 
objects in the set. In his text on topology, Mansfield [Mansfield 63] defines a metric as 
follows: 

Let A be a set of objects, let R be the set of real numbers, and let p be a one- 
to-one function such that p:A®A-> R, where ® denotes the Cartesian product 
of A with A.   Then, p is a metric for A if and only if 

• p(oc,ß) > 0 Va,ß e A, 

• p(cc,ß) = 0 <^ cc=ß , 

• p(a,ß) = p(ß,oc) V cc,ß e A, and 

• p(cc,y) < p(cc,ß) + p(ß,y) Va,ß,ye A. 
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For the purposes of this document, the term software metrics will mean measurements 
made on a software artifact. There are two important components of the software 
artifact that are measured for our purposes: the artifact's design specification document 
and its coded implementation. The early computed metrics of Halstead, McCabe, and 
Albrecht, introduced in the late 1970s, were usually based on only the coded end- 
product. These are the software science metrics [Halstead 77], cyclomatic complexity 
metric [McCabe 76], and function point analysis [Albrecht 79] that prevailed in the early 
1980s as software product measures. These earlier approaches to measuring software 
artifacts were based on the software specification methods of the time and the 
programming languages that supported these methods. The paradigm that dominated 
software development in the late 1970s and early 1980s was a top-down structured 
development. 

The need to obtain measures of the intended software product early in the life cycle 
grew along with the need to estimate the cost of the product. Since software production 
is a labor-intensive process, and labor is based on time spent, the cost of the software 
product is directly related to certain of its features such as the size of the product, the 
complexity of the product, and expected reliability of the product. Any metric that could 
be computed at the design stage and could measure any of these features is useful for 
predicting the product's cost. 

1.3. Software Measure 

The concept of a metric measuring of the distance between two objects in a set A has 
very little meaning in the world of software. Why would we want to measure the 
distance between two software products or two software specifications? It does, 
however, make sense to measure software product X and software product Y, and then, 
to compare the two measures. We also note that there is no standard of measurement 
for software artifacts that is universally accepted. Based on both the dictionary and 
mathematical definitions of metric, we see that the term software metric is not 
appropriate. The preferred term is software measure. 

1.3.1. Weyuker's Measure Properties 

Many issues arise as to what constitutes, and what are the acceptable properties of, a 
software measure. Elaine Weyuker has brought together nine properties that a 
software product measure should have [Weyuker 88]. Many authors have used these 
properties as a standard against which to evaluate their own measures. 

"All the measures considered depend only on the syntactic features of the 
program" [Weyuker 88]. 

Let P, Q, and R be programs. 

PsQ means that P and Q halt on the same input. 
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P;Q    means that P is augmented by Q. (An appending of Q to P) 

The measure of P is denoted by  | P |. 

Nine properties of measures: 

1. (3 P) (3 Q) ( | P |   * | Q | ). 

2. Let c be a nonnegative number. Then there are only finitely many programs 
of measure c. 

3. There are distinct programs P and Q such that   | P | = | Q |. 

4. (3P)(3Q) (P = Q and   | P | * | Q | ). 

5. (VP)(VQ) ( |P| <|P;Q | )and ( |Q| < | P; Q | ). 

6. (3 P) (3 Q) (3 R) ( | P |   =|Q|)&(|P;R|*  | Q ; R | )   and 

(3 P) (3 Q) (3 R) ( | P |   = | Q | ) & ( | R ; P | *   | R ; Q | ). 

7. There are program bodies P and Q such that Q is formed by permuting the 
order of the statements of P; and   | P |   *  | Q |. 

8. If Pis a renaming of Q, then   | P |   =   | Q |. 

9. (3 P) (3 Q) ( | P |   +  | Q |   <  | P ; Q | ). 

1.3.2.  Comments on Weyuker's Properties 

Property number one [ (3 P) (3 Q) ( | P | * | Q | ) ] reflects the idea that a measure 
that assigns all programs the same value is not a measure. Property number two (for a 
nonnegative number c there are only finitely many programs of measure c) is the non- 
coarseness property: it places a constraint on property one by stating that only a finite 
number of programs can be assigned the same measure. Property number three (there 
are distinct programs P and Q such that | P | = | Q | ) is often called the non- 
uniqueness property: two different products can have the same measure value. 
Property number four [ (3 P) (3 Q) ( P = Q and | P | * | Q | ) ] states that two software 
products can possess the same functionality but not have equal measure values. 
Property number five [ (V P) (V Q) ( |P| < | P; Q | ) and ( | Q| < | P; Q | ) ] is a 
monotonicity requirement: a combination (concatenation) of two products can never 
have a measure value less than either of the products taken individually. Property 
number six [ (3 P) (3 Q) (3 R) ( | P | =|Q|)&(|P;R|* | Q ; R | ) and (3 P) (3 Q) 
(3R)(|P| =|Q|)&(|R;P|* | R ; Q | ) ] states that there exist products whose 
measure values are the same, but the augmentation of either product by a third product 
can produce measure values that are not the same. Property number seven [ there are 
program bodies P and Q such that Q is formed by permuting the order of the statements 
of P; and | P | * | Q | ] states that there are software products whose measure value 
can be affected by a permutation in the order of program statements. Property number 
eight ( if P is a renaming of Q,   then | P |   -   | Q | ) is the "carbon copy" property 
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indicating that the measure value is not affected by any isomorphic transformation of 
the original product. Property number nine [ (3P) (3Q) (|P| + |Q| < | P ; Q | ) ] is 
the most controversial of the nine properties. This property states that augmentation 
increases the measure value for some software products. 

Weyuker's properties are concerned with computer programs. What features of 
computer programs do these properties encompass? The answer to this question is 
unclear. Consider property number five which states "for all programs P and Q the 
measure of program P augmented by program Q is greater than or equal to both 
programs P and Q alone." This property is reasonable if the feature of concern is 
program size and the measure is the number of lines of executable source code. 
However, for the same feature program size and the same measure number of lines of 
executable source code, property number five is in conflict with property number six. 
Property six states, "there exist programs P, Q, and R such that programs P and Q can 
have the same measure and the measure of P augmented by R is different from Q 
augmented by R." This property is not true for lines of code that are used as the 
measure and, in fact, is not true for most size measures, suggesting that Weyuker's 
properties encompass some feature other than program size. 

Since the title of Weyuker's article is "Evaluating Software Complexity Measures," the 
properties must also involve complexity. McCabe [McCabe 76] introduced a measure 
called the cyclomatic complexity metric v = n + 1, where % is the number of predicates in 
a program. A predicate in a program is a Boolean expression having one of the forms: 

B1 = B2, B1*B2, B1<B2, Bl > B2, B1<B2, or B1>B2, 

where Bl is an identifier and B2 is either a constant or an identifier. To use the 
predicate count approach to compute McCabe's metric, all statements involving 
compound Boolean expressions are reduced to a sequence of statements with only 
predicates in them. Careful calculation indicates that Weyuker's property five is 
satisfied and property six is not satisfied. Thus, Weyuker's properties do not encompass 
McCabe's view of complexity. 

Halstead, however, introduced a measure that does satisfy property six. The measure 
(called an effort measure) measures the effort involved in producing an algorithm 
[Halstead 77], but the measure is difficult to compute; it involves the counts of the total 
occurrence of operators and operands and the counts of unique operators used and 
unique operands. Halstead's effort measure is implementation-dependent. 
Furthermore, Weyuker proves algebraically that the Halstead effort measure does not 
satisfy her property number five, but does satisfy her property number six. 

Which features, then, of software products are encompassed by Weyuker's properties? 
Fenton resolves this issue by stating, "Properties five and six are relevant for very 
different (and incompatible) views of complexity. Hence it is impossible to define a set of 
axioms for a completely general view of 'complexity1" [Fenton 91]. This suggests that 
software products have features that can be identified and grouped into categories that 
include features, measures, and axioms for these measures. 
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Weyuker's set of properties is a seminal effort in establishing a basis for evaluating 
software measures. Some of the properties should apply to all software measures; some 
apply to a chosen few features that we may wish to measure. Property number two, for 
example, is a property that all measures should satisfy. Simply stated, this property 
requires that a measure not be "too coarse." Yet, property number two is not satisfied 
by McCabe's cyclomatic complexity measure, in which too many programs would be 
assigned the same measure. We provide an example of this in the computation of the 
example measures in sections 7.2.1 and 7.3.1 of this report. 

That software products have features that have conflicting properties is evidenced by 
established and accepted measures that do not satisfy some set of Weyuker's properties. 
Once a design and implementation paradigm is chosen, the features of concern of the 
software products to be produced should be isolated and grouped into categories. 
Measures can be selected for each category, and lists of properties can be developed for 
these measures. Weyuker's properties can be used as a basis for selecting these 
properties. This also suggests that a collection of measures may be appropriate for the 
application as opposed to a single measure. 

1.4.   Emergence of a New Paradigm 

A new paradigm became popular in the mid 1980s that began to affect the way software 
developers viewed software analysis and design. This paradigm, the object-oriented 
paradigm, added a new level of complexity to the study of software measures. Are 
software products produced under object-oriented techniques measurable by existing 
software measures, or does a new body of measures need to be invented? What is the 
current state of the discipline relative to object-oriented measures? 
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2. Overview of the Object-Oriented Approach 

One of the problems of any software project is simply to be able to manage the concepts, 
flow of control, and data. Many software engineers feel that part of the solution to this 
problem lies in the use of an object-oriented approach [Booch 94], which groups both 
data and procedures (called methods) into an entity called an object. These objects allow 
a programmer, designer, and analyst to examine larger cognitive blocks of a project, and 
thus clarify the programming process. While these chunks may clarify the process of 
software design, they raise some questions as to the origin of the objects, the structures 
under which they reside, and whether and how we can examine objects for complexity. 

2.1.   Origins of the Paradigm 

Ole-Johan Dahl and Kristen Nygaard of Norway created the seminal work on an object- 
oriented language with their introduction of Simula67 in 1967. As the name implies, 
Simula67 was generally used for simulation modeling and proved to be a significant 
influence on later object-oriented languages. Smalltalk, developed at XEROX in Palo 
Alto in the 1970s, was the next major development of an object-oriented language. 
Smalltalk was followed by a number of languages that either were object-oriented from 
inception, such as Eiffel, or revamped a previous language to include object-oriented 
capabilities, such as C++, Object Pascal, and Ada95. 

2.2.   Elements of the Object-Oriented Approach 

The basic element in an object-oriented system is an object. An object is an 
encapsulation of both data and functionality with the added support of message passing 
and inheritance. We refer to the data in an object as the attributes of the object, while 
the functionality is provided by the methods. These two entities—attributes and 
functionality—form a single logical entity, an object. This contrasts with the more 
traditional structured programming, which considers data separately from the 
procedures that act on them. Such a logical grouping of data, along with the procedures 
that will affect them, gives a conceptual as well as a physical basis for an object. For 
example, the same logical grouping mimics some nice properties that humans take for 
granted in the way we conceptualize everyday objects. The old joke about whether the 
price of the car includes a steering wheel indicates to us that we have predetermined 
that the object has the functionality of steering embedded in the concept of the car 
(object). 
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Objects themselves are usually created through an instantiation process that uses a 
general template called a class. The template contains the characteristics of the class, 
without containing the specific data that needs to be inserted into the template to form 
the object. This lack of specification is analogous to the well-known concept of 
referencing a stack without specifying what is in the stack. That is, certain stack 
features are well known and understood, although we do not yet know the type of 
elements in the stack. 

Classes are the basis for most design work in objects. Although the purpose may be to 
instantiate objects, that particular task can be delayed as the higher level of abstraction 
is created. Classes are either superclasses (root classes), created with a set of basic 
attributes and methods, or subclasses, meaning they inherit the characteristics of the 
parent's class and may add (or remove) functionality as desired. 

A superclass may be created with general characteristics found in all classes of a 
particular relationship. For example, a superclass car might contain the characteristics 
found in most cars: steering, braking, and power for locomotion. Subclasses of the 
superclass car would inherit all of these characteristics simply because they are a 
descendant of the superclass. From the perspective of the class that inherits the 
characteristics, the inheritance forms an IS_A relationship. This type of relationship 
forms what we call a class hierarchy lattice. 

Another type of relationship, interaction between classes, may take two different forms: 
classes may share data through aggregate or component grouping, or classes may share 
objects. 

Aggregate classes interact through messages, which are directed requests for services 
from one class (called a client) to another class (called a server). Notice that the class 
that makes the request depends upon the collaborating server class; the client is said to 
be coupled to the server. The serving class may have no dependence on the class using 
the requested material, so clearly this relationship is not commutative. The 
relationship in which two or more different classes form a component, thus developing a 
PART_OF, is also called a HAS_A relationship. 

If one object uses another object through another class, the dependency is now upon the 
attributes and methods of the used object. Because of this additional complexity, we 
choose to consider the uses relationship separately from simply the passing of 
attributes. 

CMU/SEI-95-TR-002 



3. Terminology 

3.1 Terms Specific to Object-Oriented Analysis and Design 

In this report, we treat the term object as a primitive term. Objects have attributes, 
methods, and identity (a name). The following terminology is a partial adaptation of 
Booch's set of terms [Booch 94]. We provide these definitions so that the terminology 
used to describe object-oriented software products is as uniform as possible. 

Abstraction. The essential characteristics of an object that distinguish it from 
all other kinds of objects, and thus provide, from the viewer's perspective, crisply- 
defined conceptual boundaries; the process of focusing upon the essential 
characteristics of an object. 

Aggregate object (aggregation). An object composed of two or more other 
objects. An object that is part of two or more other objects. 

Attribute. A variable or parameter that is encapsulated into an object. 

Class. A set of objects that share a common structure and behavior 
manifested by a set of methods; the set serves as a template from which objects 
can be created. 

Class structure. A graph whose vertices represent classes and whose arcs 
represent relationships among the classes. 

Cohesion. The degree to which the methods within a class are related to one 
another.^ 

Collaborating classes. If a class sends a message to another class, the classes 
are said to be collaborating. 

Coupling. Object X is coupled to object Y if and only if X sends a message to Y. 

Encapsulation. The process of bundling together the elements of an 
abstraction that constitute its structure and behavior. 

Information hiding. The process of hiding the structure of an object and the 
implementation details of its methods. An object has a public interface and a 
private representation; these two elements are kept distinct. 

Inheritance. A relationship among classes, wherein one class shares the 
structure or methods defined in one other class (for single inheritance) or in more 
than one other class (for multiple inheritance). 

-1- Here, cohesion is limited to cohesion within a class. 

CMU/SEI-95-TR-002 



Instance. An object with specific structure, specific methods, and an identity. 

Instantiation. The process of filling in the template of a class to produce a class 
from which one can create instances. 

Message. A request made of one object to another, to perform an operation. 

Method. An operation upon an object, defined as part of the declaration of a 
class. 

Polymorphism. The ability of two or more objects to interpret a message 
differently at execution, depending upon the superclass of the calling object. 

Superclass. The class from which another subclass inherits its attributes and 
methods. 

Uses. If object X is coupled to object Y and object Y is coupled to object Z, then 
object X uses object Z. 

3.2.   Comments on Terminology 

In other contexts, cohesion can apply to many other aspects of the object-oriented 
paradigm: cohesion of classes within a superclass, cohesion of instances of objects for a 
specific class, or cohesion of superclasses within a system. We apply the term cohesion 
to methods within a class. Some authors have considered various types of cohesion in 
the context of structured analysis, such as temporal, functional, and logical cohesion. 
Researchers may choose to explore these types of cohesion in the context of object- 
oriented analysis and design. 
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4. The Nature of Object-Oriented Software 

4.1. Different Features Of Object-Oriented Products 

One feature that makes objected-oriented software products different from earlier or 
conventional software products is the use of procedures and subprograms. By the mid- 
1960s, subprograms were used as a means of abstracting the main functions of a larger 
software artifact. The realization that subprograms could serve as an abstraction 
mechanism had three important consequences. First, languages were invented that 
supported a variety of parameter-passing mechanisms. Second, the foundations of 
structured programming were laid, manifesting themselves in language support for the 
nesting of subprograms, and for the scope and visibility of declarations. Third, 
structured design methods emerged, offering guidance to designers using subprograms 
as the basic building blocks [Booch 94] for large systems. 

The need to design and program larger applications caused several refinements to 
structured design methods. Among these were the structured analysis and design 
technique (SADT), Jackson structured programming, and the programming concept of 
separate compilation. In retrospect, software in the 1970s and early 1980s saw 
procedure-oriented programming, poor support for data abstraction, lack of strong data 
typing, and global use of blocks of data. 

Today, the conventional technique of structured programming is still procedure- 
oriented, but is supported by programming languages that support separate compilation 
of modules, data abstraction, strong data typing, and data encapsulation. That 
structured programming is still procedure-oriented indicates an early emphasis on 
implementation in the life cycle. Today and in the past, a major portion of the life cycle 
is spent on implementing the design. 

In contrast, object-oriented programming places greater emphasis on the design phase 
of the software life cycle. The essence of the object-oriented design is that it decomposes 
the system into objects, the basic building block of the object-oriented approach; gathers 
together the data and the functions to be performed on the data; and encapsulates the 
data and functions (methods) within the object. 

The feature that makes object-oriented software products different from the 
conventional procedure-oriented software products is the object itself. The features of 
the object that become measurable are the number of attributes the object contains, the 
number of methods the object has, the number of methods called from other objects, the 
number of methods outside the called object, and the placement of the object in the class 
hierarchy structure. 
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Unique features of object-oriented programming and design impose added complexities 
on the measuring process. These features—message passing, inheritance, and 
polymorphism—require a suite of measures designed to handle them. 

4.2 Shared Features Of Object-Oriented Products 

Abstract data types exist in conventional procedure-oriented programming languages, 
and classes can be implemented as abstract data types in most of the existing object- 
oriented languages. However, one of the key differences between the conventional 
implementation and the object-oriented implementation is the concept of inheritance. 
Without inheritance, every class implemented as an abstract data type would be an 
isolated unit. 

The methods of an object are similar to the functions, programs, or subprograms that 
are used in conventional programming, except that their functionality is limited to 
specific object classes. An object's methods are measurable. Each of these coded 
software modules can be measured by the earlier, more conventional measures. 
Examples of such measures are Halstead's software science metrics, lines of code, 
McCabe's cyclomatic complexity metric, and Albrecht's function points. 
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5. A Taxonomy for Object-Oriented Software Measures 

The object-oriented design approach gives rise to a natural taxonomy that incorporates 
the salient features and properties of an object-oriented system. Our taxonomy captures 
these properties hierarchically. It begins with the high-level characteristics of an object- 
oriented system and moves down to the low-level characteristics. 

System. We place the system and its components at the highest level. Although 
a system can be subdivided into components, we view the components as acting 
as a system. Also, the characteristics of a good component are those of a good 
system and vice versa. The measurable characteristics of a system might include 
the number of classes or class lattices in the system. 

Coupling and Uses. Classes often interact with other classes to form a 
subsystem. Characteristics of this interaction may indicate a complexity 
resulting from too much coupling, or from using objects derived from objects that 
have been obtained from yet another object. Such complexity can complicate the 
programming process. Uses and coupling are related issues; uses is defined in 
terms of coupling. We feel that the origin of uses and coupling in the interaction 
of classes makes them a single taxon: both capture the interaction of classes. 

Inheritance. Classes are found in a class structure diagram, often called a class 
hierarchy lattice. Visible in the lattice are the inheritance relationships between 
classes and their parents—the properties shared by both. Such relationships 
may indicate to a designer where changes would improve the development. The 
lattice itself contains interesting characteristics, such as the depth and breadth 
of the lattice. 

Class. Next on the taxonomy is the class, which contains the methods. The 
class may have methods that are unnecessary or too complex to work together. It 
may have extraneous data that complicates the programming process. The class 
may be linked too closely to other classes or have characteristics that make it an 
excellent candidate for inclusion in a library. 

Method. Attributes and methods occur at the finest level of detail. While the 
attributes and data structures are fairly well understood, the methods are 
usually developed much like procedures are in structured programming. The 
characteristics of procedures are known, and techniques to analyze them are 
common. Methods have the additional complexity of calling objects other than 
the object that contains them. 

Careful inspection shows that this taxonomy encompasses all the characteristics of 
object-oriented software products and captures the features of the design at the 
appropriate levels. These taxa also give the best insight into potential areas of concern, 
such as depth of inheritance, cohesion, size of objects, and system structure. (See Table 
5-1.) 
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5.1. Examples of Measures and Their Corresponding Taxon 

Table 5- : Measures and Their Corresponding Taxon 

System Coupling & Uses Inheritance Class Method 

Abreu 93 SCI 
SRI 

SR2 
SR3 

CC2     CRl 

CC3     CR2 

CR3 

Banker 91 OC   OP 

RL 

RFC 

Chen 93 CCM     OCM CHM OXM     RM 
OACM 

ACM    CM 

Chidamber 94 CBO DIT 

NOC 

WMC   RFC 

LOCM 

Coppick 92 SSM    MCC 

(Flavors) 

Laranjeira 90 Size 

Lee 93 HC 

PC 

CC MC 

Li 93 MPC DAC 
NOM   Size2 

Sizel 

(ClassicAda) 

Moreau 90ab GSDM IL SSM    MCC 

(C, C++) 

Sharble 93 NOT    VOD WAC 

Tegarden 92 SSM    MCC 

LOC 

Williams 93 CBC 

CSC 

CCR    COU 

Total Measures 12 10 4 19 9 
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5.2. Explanation of Table Acronyms 

Abreu 94 

Banker 91 

Chen 93 

Chidamber 94 

SCI - System Complexity (total length of inheritance chain) 

CC2 - Class Complexity (progeny count) 

CC3 - Class Complexity (parent count) 

CR1 - Class Reuse (% of inherited methods that are 
overloaded) 

CR2 - Class Reuse (number of times class is reused "as is") 

CR3 - Class Reuse (number of times class is reused with 
adaptation) 

SRI - System Reuse (% reused "as is" classes) 

SR2 - System Reuse (% reused classes with adaptation) 

SR3 - System Reuse (library quality factor) 

RFC - Raw Function Counts 

OC - Object Counts (count of classes) 

OP - Object Points 

RL - Reuse Leverage 

OXM - Operation Complexity Metric (within a class) 

OACM - Operation Argument Complexity Metric 

ACM - Attribute Complexity Metric 

OCM - Operation Coupling Metric 

CCM - Class Coupling Metric 

CM - Cohesion Metric 

CHM - Class Hierarchy of Method 

RM - Reuse Metric (of classes) 

WMC - Weighted Methods per Class 

DIT - Depth of Inheritance Tree 

NOC - Number Of Children 

CBO - Coupling Between Object classes 

RFC - Response For a Class 

LCOM - Lack of Cohesion Of Methods 
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Coppick 92 SSM - Software Science Metrics (Halstead) 

MCC - McCabe's Cyclomatic Complexity metric 

Laranjeira 90 Size - Size of Object-Oriented system 

Lee 93 MC - Method Complexity 

CC - Class Complexity 

HC - Hierarchy Complexity of system 

PC - Program Complexity 

Li 93 DAC - Data Abstraction Coupling 

(Number of abstract data types) 

NOM - Number Of local Methods 

MPC - Message Passing Coupling (number of send 
statements in a class) 

Sizel - number of semi-colons in a class 

Size2 - number of attributes + number of local methods 

Moreau 90ab SSM - Software Science Metrics (Halstead) 

MCC - McCabe's Cyclomatic Complexity metric 

IL - Inheritance Lattice (stated, but no measure indicated) 

GSDM - Graph of Source and Destination of Messages (no 
measure given) 

Sharble 93 WAC - Weighted Attributes per Class 

NOT - Number Of Tramps (count of extraneous parameters) 

VOD-Violations Of the law of Demeter [Lieberherr 89] 

Tegarden 92 SSM - Software Science Metrics (Halstead) 

MCC - McCabe's Cyclomatic Complexity metric 

LOC- Lines Of Code 

Williams 93 COU-Count Of Uses 

CBC - Count of Base Classes 

CSC - Count of Standalone Classes 

CCR - Count of number of Contains Relationships 
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6. Annotated Bibliography 

This bibliography enables the practitioner to scan the literature on software measures 
and develop a suite of metrics that apply in his or her environment. Section 6.1 
contains most of the recent articles that present a software measure and specifically 
indicate how the measure is determined. Section 6.4 includes texts on general topics 
directly related to object-oriented software design and software measure. Section 6.2 
lists the key seminal works of Halstead, McCabe, and Albrecht, since they provide a 
historical base for the discipline. In the annotations below, we have attempted to 
elucidate the key contributions of each article or text. 

6.1. Articles Related to Object-Oriented Measures 

Abreu, Fernando B. & Carapuca, Rogerio. "Candidate Metrics for Object-Oriented 
Software within a Taxonomy Framework." Journal of Systems Software 26, 1 (July 
1994): 87-96. 

The authors provide a taxonomy for metrics of object-oriented products and 
processes. This taxonomy, TAPROOT, deals with both product and process 
metrics plus some "hybrid" metrics that measure both. The author's taxonomy is 
based on a Cartesian product of the two vectors: (design, size, complexity, reuse, 
productivity, quality) and (method, class, system). This produces eighteen 
possible cells into which a metric can reside. Class and system quality metrics 
that the authors suggest are based on counts of observed defects, failures, and 
time between failures. TAPROOT is presented as a starting point from which 
further refinement and verification can follow. 

Aksit, Mehmet & Bergmans, Lodewijk. "Obstacles in Object-Oriented Software 
Development," pp. 341-358. Proceedings: OOPSLA Conference. ACM Press, October 
1992. 

Based on the results of some pilot studies, the authors have formed their own 
viewpoint of object-oriented methods and have documented some obstacles. The 
authors state that each phase in object-oriented software development can be 
subdivided into three sub-components: preparatory work, structural relations, 
and object interactions. A short summary of state-of-the-art object-oriented 
methods follows the subdivision taxa. 
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Banker, Rajiv D.; Kauffman, Robert J.; & Kumar, Rachina. "An Empirical Test of 
Object-based Output Measurement Metrics in a CASE Environment." Journal of 
Management Information Systems 8, 3 (Winter 1991): 127-150. 

This 23-page article begins by reporting studies that indicate the use of CASE 
without having measurement programs in place. The authors' main thrust is the 
issue of output measurement in a CASE environment. 

Their comments on function points (FP) are 

FP components do not follow naturally from an object-based CASE 
environment. 

Application of FP to CASE-generated code is subjective and 
inconsistent. 

Albrecht's original FP weights need to be re-calibrated for CASE 
tools. 

The usual Technology-Complexity-Factor (TCP) adjustment for FP may 
need revised for CASE since TCP is based on 3GL development. 

The authors propose a short-form variation of FP called Raw-Function-Counts 
and two new object-based output measures, Object-Counts and Object-Points. 
The authors statistically validate the various metrics to estimate effort, and their 
results are significant. These proposed measures worked well in the CASE 
environment created by the ICE software. The authors conclude, "Since objects 
were found to match project managers' mental model of the functionality of 
software developed with object-based CASE, information about objects would be 
useful to promote improved software development process control." 

Byard, Cory. "Software beans: Class metrics and the mismeasure of software." Journal 
of Object-Oriented Programming 7, 5 (September 1994): 32-34. 

This non-technical article discusses "why measure software," "class metrics," and 
"mismeasurement." The author comments, "class metrics do not measure 
complexity, do not measure the size of an application, and do not measure the 
quality of software." Class metrics "are indicators of programming style." The 
author concludes, "The key is not measurement, but process"; and, "developing 
new measures that analyze implementation vocabulary complexity, module 
cohesion and coupling, and development progress will help." 

Chen, J-Y. & Lum, J-F.   "A New Metric for Object-Oriented Design."   Information of 
Software Technology 35, 4 (April 1993): 232-240. 

The authors use Basili's Goal-Question-Metric model to develop metrics for 
complexity for object-oriented design. The authors propose eight metrics that are 
identifiable at the design stage: 
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1. operation complexity metric 5. class coupling metric 

2. operation argument complexity metric 6. cohesion metric 

3. attribute complexity metric 7. class hierarchy metric 

4. operation complexity metric 8. reuse metric 

Metrics 1 through 3 are subjective in nature; metrics 4 through 7 involve counts 
of features; and metric 8 is a boolean (0 or 1) indicator metric. To validate these 
metrics, the authors conduct an experiment involving six "experts" whose 
subjective class scores are regressed against the eight metrics. The resulting 
regression equation is used to score future object classes. The paper does not 
report the original data, the complete SAS output, or the criteria that the 
"experts" use to measure complexity. 

Chidamber, Shyam R. & Kemerer, Chris F. "Towards a Metrics Suite For Object 
Oriented Design," pp. 197-211. Proceedings: OOPSLA'91. Phoenix, Arizona, October 6- 
11,1991. New York, New York: ACM SIGPLAN Notices, 1991. 

The authors propose six metrics that they evaluate relative to seven of Weyuker's 
properties. The authors' objective is to propose metrics that are not language 
specific. They introduce measures that capture some features such as coupling, 
cohesion, complexity, scope, and methods (defined as responses to possible 
messages). 

Chidamber, Shyam & Kemerer, Chris F. "A Metrics Suite for Object-Oriented Design." 
IEEE Transactions on Soßware Engineering 20, 6 (June 1994): 476-493. 

The authors use the theoretical base for ontological principles proposed by Bunge 
as a means of establishing a basis upon which to discuss the object-oriented 
metrics suite. Much of the material in the first four pages is the same as in their 
earlier paper in 1991. The authors define six metrics and evaluate them with 
respect to six of Weyuker's nine properties. They propose six metrics for object 
classes: 

1. Weighted Methods per Class (WMC). 

2. Depth of Inheritance Tree (DIT). 

3. Number Of Children (NOC), number of immediate subclasses 
subordinate to a class in the hierarchy. 

4. Coupling Between Object classes (CBO). 

5. Response For a Class (RFC), cardinality of the set of all methods that 
can be invoked by some method in the class. 

6. Lack of Cohesion Of Methods (LCOM), the number of method pairs 
whose similarity is zero minus the counts of the method pairs whose 
similarity is not zero. 

These metrics are based on three assumptions: the inheritance tree is full, two 
classes can have a finite number of identical methods, and certain counts of 
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features   are  random  variables  that  are  identically  and  independently 
distributed. 

Churcher, Neville & Sheppard, Martin J. "Towards a Conceptual Framework for 
Object-Oriented Software Metrics." Software Engineering Notes 20, 4 (April 1995): 69- 
75. 

The authors caution that software measures for 0-0 systems present 
significantly greater challenges than their conventional counterparts. They 
propose a set of terms to serve as a basis for comparison of models of 0-0 
systems. They emphasize the problems arising from different interpretations of 
coupling and uses. They summarize by stating "it seems premature to proceed 
with the speculative development of specific metrics due to the absence of a 
satisfactory framework fro their validation." 

Coppick, Chris J. & Cheatham, Thomas J. "Software Metrics for Object-Oriented 
Systems," pp. 317-322. Proceedings: ACM CSC '92 Conference. Kansas City, Missouri, 
March 3-5, 1992. New York, New York: ACM Press, 1992. 

The authors extend the Halstead metric and McCabe metric to object-oriented 
software design. The authors' examples are in LISP Flavors. An undefined tool 
(code not included) is applied to LISP source code, and the usual software science 
metrics are computed. The authors count the number of methods and observe 
that increased abstraction reduces programming effort. Nothing concrete is done 
with McCabe's metric. 

Gowda, Raghava G. & Winslow, Leon E. "An Approach for Deriving Object-Oriented 
Metrics," pp. 897-904. Proceedings: IEEE 1994 National Aerospace and Electronics 
Conference. Dayton, Ohio, May 23-27, 1994. Los Alamitos, California: IEEE Computer 
Society Press, 1994. 

The authors comment, "The object-oriented metrics proposed so far seem to 
concentrate on the design of a single class or the class structure and ignore the 
overall design of the system and program." They propose a classification scheme 
for object-oriented metrics with the five categories of system metrics, subsystem 
metrics, class metrics, object metrics, and reusability metrics. They discuss and 
contrast each of the methodologies of Rumbaugh and Wirfs-Brock. The authors 
claim to have a list of metrics that can be applied to some of the phases of each 
methodology. Although the authors actually list some features of the phase and 
methodology that can be measured, they do not indicate how to measure the 
feature. 

Jones, Capers. Programming Productivity. New York, NY: McGraw-Hill, 1986. 

The author summarizes the first 30 years of industrial and commercial 
programming.   The first two chapters of this four-chapter book are about the 
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science of measurement and serve as an excellent introduction to the topic of 
measurement. In the third chapter, the author isolates 20 factors, supported by 
historical data, that have affected programming productivity. 

1. The language used 11. Maintenance 

2. Program size 12. Reuse (modules & design) 

3. Personnel experience 13. Code generators 

4. Requirements 14. 4GLs 

5. Complexity of program & data    15. Separation of development locales 

6. Use of structured methods 16. Defect detection & removal 

7. Program class 17. Documentation 

8. Program (application area) 18. Prototyping 

9. Tools & environment 19. Project teams & organization 

10. Enhancing existing systems      20. Morale & compensation of staff 

Chapter four explores the intangible factors, which are not readily quantifiable, 
that affect productivity. These factors include size of staff and enterprise, 
stability during the project, training for staff and users, computing facilities, 
legal issues, project measurement mechanisms, outsourcing, project dynamics, 
and user participation among all of these. This is a good book for the beginning 
software engineer. Jones has a second edition of this work in publication. 

Laranjeira, Luiz.    "Software Size Estimation of Object-Oriented Systems."   IEEE 
Transactions on Soßware Engineering 16, 5 (May 1990): 510-522. 

The author presents a size estimation model that takes advantage of the 
characteristics of object-oriented systems and their specification. He also 
provides a confidence interval for the expected system size. COCOMO is applied 
in this setting to produce cost estimates. 

Lee, Yen-Sung; Liang, Bin-Shiang; & Wang, Feng-Jian. "Some Complexity Metrics for 
Object-Oriented Programs Based on Information Flow," pp. 302-310. Proceedings: 
CompEuro. Paris-Ivry, France, May 24-27, 1993. Los Alamitos, California: IEEE 
Computer Society Press, 1993. 

The authors use Weyuker's nine properties as a basis of evaluation. They define 
four metrics: method complexity (MC), class complexity (CC), hierarchy 
complexity (HC), and program complexity (PC). These measures are based on 
various forms of the basic model: 

size*(input coupling + output coupling)A2 

None of the proposed metrics satisfy Weyuker's seventh property. 
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Li, Wei & Henry, Salley. "Maintenance Metrics for the Object Oriented Paradigm," pp. 
52-60. Proceedings: First International Software Metrics Symposium. Baltimore, 
Maryland, May 21-22, 1993. Los Alamitos, California: IEEE Computer Society Press, 
1993. 

The authors state that metrics for the object-oriented paradigm have yet to be 
studied. Since terminology varies among object-oriented programming 
languages, the authors consider the basic components of the paradigm as objects, 
classes, attributes, inheritance, method, and message passing. They propose 
that each object-oriented basic concept implies a programming behavior. They 
include six metrics from Chidamber [Chidamber 91]: 

Depth of Inheritance Tree (DIT) Coupling Between Objects (CBO) 

Number Of Children (NOC) Response For Class (RFC) 

Lack of Cohesion Of Class (LCOM)       Weighted Method per Class (WMC) 

The authors construct a Classic-Ada metric analyzer to collect metrics from 
Classic-Ada design and source code. They define five additional metrics to 
complete the modeling: 

Data Abstraction Coupling (DAC) Number of Methods (NOM) 

# of semicolons per class (Sizel) # of methods per # attributes (Size2) 

Message Passing Coupling (MPC) 

A regression analysis is used with Change = number of lines changed in the 
artifact's history (classes) as the dependent variable. The authors' analysis of 
the results reveals that the metrics chosen (all 10) can predict the number of 
changes. There is no individual breakdown of which of these metrics is 
significant in the prediction. 

Lieberherr, Karl J. & Holland, Ian M.   "Assuring Good Style for   Object-Oriented 
Programs."   IEEE Soßware 6, 5 (September 1989): 38-48. 

The authors put forward a simple law, the Law of Demeter, that encodes the 
ideas of encapsulation and modularity in an easy-to-follow form for object- 
oriented programmers. The law has two forms: class and object forms. The class 
form comes in two versions: minimization and strict versions. 

Class minimization version - Minimize the number of acquaintance classes 
over all methods. 

Class strict version - All methods may have only preferred-supplier classes. 

Objects - All methods may have only preferred-supplier objects. 

The motivation behind the Law of Demeter is to ensure that the software is as 
modular as possible. The law effectively reduces the occurrences of nested 
message sending and simplifies the methods. 
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Moreau, Dennis R. & Dominick, Wayne D. "A Programming Environment Evaluation 
Methodology for Object-Oriented Systems: Part I - The Methodology." Journal of Object- 
Oriented Programming 3, 1 (May/June 1990): 38-52. 

The authors set forth three objectives for their research (paraphrased below): 

1. Establish an evaluation methodology to measure impact of object- 
oriented design on the software development process. 

2. Establish domain-specific problem decomposition and solution 
guidelines to support comparisons of object-oriented approaches. 

3. Perform verification of object-oriented metrics. 

The principles of the proposed method are based on user activities, are 
environment-independent, and are based on well-constructed experiments. The 
authors claim that the method is extensible, captures the structural object- 
oriented aspects of the software, and provides for the automatic capturing of the 
metrics-related data. The authors include Halstead's little n and big N metrics 
and McCabe's cyclomatic complexity metrics, along with two measures that are 
based on object-oriented features, a graph of the source and destination of all 
messages, and an inheritance lattice. This paper provides a clear overview of a 
method for measuring object-oriented software. 

Moreau, Dennis R. & Dominick, Wayne D. "A Programming Environment Evaluation 
Methodology for Object-Oriented Systems: Part II - Test Case Application." Journal of 
Object-Oriented Programming 3, 3 (September/October 1990): 23-32. 

In this companion article to their article above, Moreau and Dominick discuss a 
refinement of the objectives set forth previously into theoretical, methodological, 
developmental, and evaluative components. The methodology is applied in an 
interactive graphics application domain. The test case was completed in 11 
phases: 

1- Identify applications domain {interactive graphics editor} 

2- Identify test development systems {C & C++} 

3- Identify development paradigms {GKS for C & object-oriented for C++} 

4- Identify metrics {those in Moreau [Moreau 1990a]} 

5- Identify and classify development activities {three separate tasks} 

6- Establish evaluative criteria {Basili's direct cost/quality criteria} 

7- Develop environment independent experiments 

8- Prepare environments {no functional differences} 

9- Develop environment-specific experiments {8 subjects, 4 in each 
experimental group} 

10- Perform experiments 

11-Analyze results {non-parametric Wilcoxon statistics P=0.07} 
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The authors state, "This research has formally established the primary metric 
data definitions that completely characterize the unique aspects of object- 
oriented software systems, including the inheritance lattice and message graph." 

Park, Robert E. Software Size Measurement: A Framework for Counting Source 
Statements (CMU/SEI-92-TR-20, ADA258304). Pittsburgh, Pa.: Software Engineering 
Institute, Carnegie Mellon University, 1992. 

This technical report presents guidelines for defining, recording, and reporting 
two frequently used measures of software size: lines of code and logical source 
statements. Park proposes a general framework for constructing size definitions 
and uses it to derive operational methods for reducing misunderstandings in 
measurement results. 

Poulin, Jeffrey S. & Brown, David D. "Measurement-Driven Quality Improvement in 
the MVS/ESA Operating System," pp. 17-25. Proceedings: Software Metrics Symposium. 
London, U.K., October 24-26, 1994. Los Alamitos, California: IEEE Computer Society 
Press, 1994. 

This paper describes experiences, quality initiatives, models, and metrics used to 
obtain quantifiable results in a large, complex software system. Although no 
object-oriented metrics were actually developed or computed, this paper shows 
that the introduction of object-oriented design and the construction of high 
quality reusable frameworks played a critical role in defect reduction. 

Sharble, Robert C. & Cohen, Samuel S. "The Object-Oriented Brewery: A Comparison 
of Two Object-Oriented Development Methods." SIGSOFT Soßware Engineering Notes 
18, 4 (April 1993): 60-73. 

This paper reports on research to compare the effectiveness of two methods for 
the development of object-oriented software. The two methods compared are 
responsibility-driven methods and data-driven methods. Each of the methods 
was used to develop a model of the same system. The authors use a suite of 
object-oriented metrics to collect measures of each model. The model developed 
with the responsibility-driven method was found to be less complex, to have less 
coupling between objects, and to have more cohesion within objects. The 
research produced three new metrics that can be useful for measuring object- 
oriented designs. 

WAC - Weighted Attributes per Class. 

NOT - Number of Tramps (number of extraneous parameters in 
signatures of methods of a class. 

VOD - Violations of the Law of Demeter. 
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Symons, Charles.   "Function Point Analysis: Difficulties and Improvements."   IEEE 
Transactions on Soßware Engineering 14, 1 (January 1988): 2-11. 

The author critically reviews Albrecht's function point analysis, proposes ways of 
overcoming the weaknesses identified, and validates by experimentation the 
proposed improvements. Some criticisms are that FPs underweight systems that 
are complex internally and FPs are not "summable." The author proposes the 
"Mark II" formula for information processing component size in unadjusted 
function points which is: 

UFP = NI*WI + NE*WE + NO*WO 

where 

NI = number of input data elements 

WI = weight of an input data type 

NE = number of entity-type references 

WE = weight of an entity-type reference 

NO = number of output data element types 

WO = weight of output data element type 

Symons determines a set of weights from 12 systems and recalibrates these 
weights to match Albrecht's original UFP values for systems under 500 FPs. He 
concludes that 

• Mark II involves an understanding of entity analysis, no conventions 
yet. 

• Mark II has fewer variables to count, but more technical factors to 
consider. 

• Albrecht's FP is not a technology-independent measure of system size 
and neither is Mark II, since a change in technology involves 
recalibrating. 

• FP analysis works for business applications, but may not work well for 
scientific or technical applications. 

Taenzer, David; Ganti, Murthy; & Podar, Sunil.   "Object-Oriented Reuse: The Yo-yo 
Problem." Journal of Object Oriented Programming. (September/October 1989): 30-35. 

The authors review two basic approaches to software reuse, construction, and 
inheritance, and present some basic problems and conflicts between 
encapsulation and inheritance. They discuss the basic styles for reuse of 
construction and subclassing. Based on their own experiences in reuse, the 
authors give examples of message control trees. This discussion leads to the 
definition of the "Yo-yo" problem, where resolutions of a message goes up and 
down the message tree. 
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Tegarden, David P.; Sheetz, Steven D.; & Monarchi, D.E. "Effectiveness ofTraditional 
Metrics for Object-Oriented Systems," pp. 359-368. Proceedings 25th Hawaii 
International Conference on System Sciences 4. Kauai, Hawaii, January 7-10, 1992. Los 
Alamitos, California: IEEE Computer Society Press, 1991. 

The authors begin by quoting Moreau: "traditional metrics are inappropriate for 
object-oriented systems for several reasons..." [Moreau 90]. This paper addresses 
two questions: 

1. Can existing metrics developed for structured systems be used as 
effective measures of object-oriented systems? and 

2. Can certain unique aspects of object-oriented systems be measured by 
traditional metrics? 

In the background section, the authors create a small taxonomy of complexity 
based on Card and Conte [Card 90], [Conte 86]. They discuss the traditional 
SLOC, Halstead metrics, and the cyclomatic metric and these metric's potential 
use in the object-oriented setting. The authors conclude, "The use of the 
traditional metrics may be appropriate for the measurement of the complexity of 
object-oriented systems. Even though the order of magnitude of the traditional 
metrics may be suspect, the directionality seems to be correct." 

Waguespack, Leslie J, Jr. & Badlani, Sunil. "Software Complexity Assessment: An 
Introduction and Annotated Bibliography." Software Engineering Notes 12, 4 (October 
1987): 52-71. 

The authors provide an introduction to software complexity and provide an 
exhaustive list of nineteen categories of complexity research. The works listed in 
the article cover the years 1974-1987, plus one entry from 1967. Some 500 works 
are listed in the form [Lastname##] where ## is the last two digits of the year, 
and 100 of these were selected for the annotated bibliography. The annotated 
bibliography contains the complete reference citation and the original abstract 
(or an excerpt from the work which portrays the author's intent) followed by the 
annotation. 

Wang, A.S. & Dunsmore, H.E. "Early Software Size Estimation: A Critical Analysis of 
the Software Science Length Equation and a Data-Structure-Oriented Size Estimation 
Approach," pp. 211-222. Proceedings: Third Symposium on Empirical Foundations of 
Information and Soßware Science. Rosklide, Denmark, October 21-24, 1985. New York, 
New York: Plenum Publishing Co., 1985. 

The authors address early size estimation by emphasizing the weaknesses of the 
current size estimation metrics in 1985. They conjecture that program size can 
be estimated as a function of some other measurable quantities related to the 
program. Empirically, data from Pascal programs suggest that the Halstead 
length equation is not suitable for predicting the size of large Pascal programs. 
The authors found that the count of the VAR (the number of unique variables) is 
an acceptable size estimation. Experimental results yield: 
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S = 102 + 5.31*VAR   as an estimate with r=0.94 and mean 

MRE = 0.30 

Based on these results, early estimation of program size can be improved at the 
end of the design stage by using the VAR count. The authors caution that these 
are "lab" results, and software that was produced in the lab was not nearly as 
large as that produced in industry. 

Weyuker, Elaine. "Evaluating Software Complexity Measures." IEEE Transactions on 
Software Engineering 14, 9 (September 1988): 1357-1365. 

Weyuker establishes a standard for software measures in this seminal article. 
She states the conditions for a measure as follows: 

"All the measures we consider depend only on the syntactic features 
of the program." 

P = Q means that programs P and Q halt on the same input. 

P;Q means that P is augmented by Q (a concatenation). 

The measure of P is denoted by  | P |. 

The nine properties of measures: 

1. (3P)(3Q) ( | Pj *| Q | ). 

2. Let c be a number >0. Then there are finitely many programs of 
complexity c. 

3. There are distinct programs P and Q such that   | P | = | Q |. 

4. (3P)(3Q) (PsQ and   | P . j * | Q | ). 

5. (VPHVQ) ( | P|   <| P;Q | and   | Q |   <| P;Q | ). 

6. (3 P) (3 Q) 0 R)< | P |   = | Q | ) & ( | P ; R |  *  | Q ; R | ) 
and (3 P) (3 Q) (3 R) ( | P |   =|Q|)&(|R;P|   *   | R ; Q | ). 

7. There are program bodies P and Q such that Q is formed by 
permuting the order of the statements of P; and   |P|  *  |Q|. 

8. If Pis a renaming of Q, then   | P |   =   | Q |. 

9. (3PM3Q) (|P|  +  | Q'|   <  |P;Q| ). 

Williams, John D. "Metrics for Object Oriented Projects," pp. 13-18. Proceedings: Object 
Expo Euro Conference. London, U.K., July 12-16, 1993. New York, New York: ACM 
SIGS Publications, 1993. 

The author poses the question, "Why metrics?" The answer, he says, is in both 
project management metrics and software development metrics. He proposes a 
"3db" curve for monitoring project progress. Neither the 3, the d, nor the b is 
defined. For software development, the author suggests using counts of "uses," 
counts of the number of base classes (classes that represent reused code), counts 
of stand-alone classes, and counts of the number of "contains" relationships in a 
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class. He comments, "depending on how deep a class is in the inheritance tree, it 
may have many 'hidden' members and methods." 

6.2.   Early Seminal (Much Quoted) Works of Significance to the Discipline 

Albrecht,  A J.   "Measuring  application  development  productivity,"  pp.   83-92. 
Proceedings: IBM Applications Development Joint SHARE/GUIDE   Symposium. 1979. 

This is the seminal work on function points. Albrecht's intent is to measure the 
amount of functionality in a software product based on either the coded product 
or a structured specification document. 

Halstead, M. H. Elements of Software Science. North-Holland, NY: Elsevier Publishing, 
1977. 

This is the original early work on measuring coded software products based on 
lexical issues of the product, such as numbers of operators, operands, unique 
operators, and unique operands. The theory for both the length metric and the 
volume metric is based on principles of cognitive psychology and a subjectively 
determined constant called the Stroud Number. 

McCabe, T.J.  "A Complexity Measure." IEEE Transactions on Software Engineering 2, 
4 (April 1976): 308-320. 

McCabe's cyclomatic complexity metric is the first of the attempts at measuring 
complexity. The metric is based on the features of a directed graph 
representation of the software product. 

6.3. Textbooks on Software Metrics 

Card, David L. & Glass, Robert L.  Measuring Software Design Quality.     Englewood 
Cliffs, NJ: Prentice-Hall, 1990. ISBN 0-13-568593-1. 

This short paperback text (104 pages plus appendices and references) is quite 
readable. The book proposes a small set of measures (referred to as "primitive 
design metrics") that are centered around design quality. The authors' intent is 
to provide the practitioner with criteria for improving software designs to 
promote productivity, quality, and maintainability. Most of the examples and 
data come from a structured design environment with FORTRAN as the 
language. 
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Conte, S.D.; Dunsmore, H.E.; & Shen, V.Y.  Soßware Engineering Metrics and Models. 
Menlo Park, Calif.: Benjamin/Cummings, 1990. 

This text presents the classical product measures, classical models of process, 
and the product and process measures currently available in the late 1980s. The 
authors include a chapter on experimental design and basic statistical inference. 
They present a set of model evaluation criteria that practitioners should find 
useful. They examine effort from two viewpoints, macro and micro 
environments, and include the classical studies that are associated with each of 
these environments. This text has worked well for me in a senior-level software 
measures class. 

Fenton, Norman E. Software Metrics, A Rigorous Approach.  London: Chapman & Hall, 
1991.   ISBN 0-412-40440-0. 

This text is solid and well written. Chapter 1 motivates the discipline. Chapters 
2 through 6 provide a coherent framework for the many diverse activities that 
comprise software metrics. Among these are measurement theory, design of 
experiments, and data collection. Chapters 8 through 13 cover process measures, 
product measures, and resource measures. The author has provided an 
extensive, partially annotated bibliography. 

Zuse, Horst. Soßware Complexity Measures and Methods.   Berlin: Walter de Gruyter & 
Co, 1990. ISBN 3-11-012226-X. 

This is the most comprehensive coverage of software complexity measures 
available in 1990. The text covers the issue of "metric versus measure," 
discusses measurement, and discusses the various ways that data can be 
classified. The author includes at least ninety measures that have appeared in 
the literature (mostly European sources). The text is recommended as a 
reference for researchers and instructors. 

6.4. Textbooks on the Object-Oriented Approach 

Booch, Grady.   Object-Oriented Analysis and Design, Second Edition.   Redwood City, 
Calif: Benjamin/Cummings, 1994. ISBN 0-8053-5340-2. 

This is a solid text for learning the essence of the object-oriented approach. It 
covers the notation of the method, discusses analysis and design strategies, and 
contains an extensive bibliography. The text is a good reference book and a good 
text for an upper-level undergraduate class. 
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Coad, Peter & Yourdon, Edward.  Object-Oriented Analysis, Second Edition.  Englewood 
Cliffs, NJ: Yourdon Press, 1991. ISBN 0-1362-9981-4. 

The authors cover object-oriented analysis in a straight-forward manner and 
introduce an object-oriented analysis (OOA) methodology consisting of five steps: 
identifying classes and objects, identifying structures, identifying subjects, 
defining attributes, and defining services. All of these items are combined into 
an "object diagram," which resembles a dataflow diagram combined with an 
entity-relationship diagram. The book's strength is the discussion of 
management issues that emerge from using object-oriented techniques. 

Jacobson, I.; Christerson, M.; Jonsoon, P.;  &  Overgaard, G.  Object-Oriented Software 
Engineering. Reading, Me.: Addison-Wesley, 1992. ISBN 0-2015-4435-0. 

This text serves as a good introduction to the object-oriented technique. It 
presents object-oriented software engineering (OOSE) as a new methodology that 
emphasizes the interaction of the user with the system and emphasizes the 
problem domain. The text contains clear examples of the object-oriented 
approach at all levels of software development. Smooth reading of this text is 
impeded by frequent typographical errors. 

Rumbaugh, J. et al.   Object-Oriented Modeling and Design.     Englewood Cliffs, NJ: 
Prentice-Hall, 1991. ISBN 0-1362-9841-9. 

This text is a solid coverage of the subject. The authors propose a complete 
methodology, the object modeling technique (OMT), which covers analysis, 
design, and implementation. The authors contrast their OMT with structured 
analysis and design and with Jackson's structured development method. For 
those of us who are familiar with the procedure-oriented techniques, the text 
provides a smooth transition to object-oriented techniques. 

Wirfs-Brock, Rebecca; Wilkerson, B; & Weiner, L. Designing Object-Oriented Software. 
Englewood Cliffs, NJ: Prentice-Hall, 1991. ISBN 0-1362-9825-7. 

The authors define the object-oriented approach and provide a complete coverage 
of object-oriented principles. They emphasize a responsibility-driven viewpoint 
of analysis and design that emphasizes clients and servers. They also suggest 
that quality of design can be measured by counts of the number of classes, the 
number of subsystems, the number of contracts per class, and the number of 
abstract classes. The diagrams are clear and reinforce the material. 
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6.5. Significant Articles on the Object-Oriented Approach 

Coleman, D.; Dollin, C; & Jeremaes, P. "Fusion: A Second Generation Object-Oriented 
Analysis and Design Method," pp. 189-193. Proceedings: Object EXPO Europe 
Conference. London, U.K., July 12-16, 1993. New York, New York: ACM SIGS 
Publishing, 1993. 

The authors propose a method that incorporates the methods of Booch, 
Rumbaugh, and others to provide a direct route from requirements to 
implementation. This method, fusion, is a systematic method for use by medium- 
to large-size teams in the industrial environment and was developed at Hewlett- 
Packard Labs, Bristol, UK. 

6.6. Texts on Mathematics and Statistics Relating to Measures 

Mansfield, Maynard. Introduction to Topology. Princeton, NJ: Van Nostrand, 1963. 

This is a classic text on topology. This small book (116 pages) covers the basics of 
point set topology at the undergraduate level and is a source of discussion for 
metrics and metric spaces. 

Sachs, Lothar.   Applied Statistics: A Handbook of Techniques, Second Edition.   New 
York, NY: Springer-Verlag, 1984. ISBN 0-3871-6835-4. 

This text is an excellent reference for statistical techniques and the concept of 
measuring phenomena so that they can be evaluated statistically. The text 
contains a wide range of tables of value to statisticians. It is also a good source of 
non-parametric statistical procedures. 
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7. Examples of Computation of Measures 

In this section, we compute the measures that are representative of each taxon. We 
chose two examples that represent object-oriented design and implementation. The first 
is a computer performance simulation written in C++; the second is a car dashboard 
instrumentation written in Ada95. 

7.1. Representative Measures for Each Taxon 

As indicated in Section 5.1., many measures have been presented in the literature on 
object-oriented software product measures. We choose five measures, one representing 
each of our taxa, that we feel are representative of an entire suite of measures. These 
measures are listed in Table 7-1 below. 

Tab] e 7-1: Representative Measures 

Taxon Measure 
Chosen for 
Taxon 

Description of Measure Reference 

Method MCC McCabe's Cyclomatic Complexity metric [Tegarden 92] 

[McCabe 76] 

Class Size2 Total number of attributes and methods 
for a class 

[Li 93] 

Inheritance DIT The depth of the inheritance tree [Chidamber 
94] 

Coupling 
and Uses 

CCM The   summation   of  the   number   of 
accesses to other classes, the accesses by 
other classes, and the number of 'co- 
operating' classes. 

[Chen 93] 

System SCI The   total   number   of edges  in  the 
hierarchy graph for the system. 

[Abreu 93] 
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7.2. C++ Example (Computer Performance) 

This example is based on the sample application program taken from the Johnsonbaugh 
and Kalin text on object-oriented programming in C++ [Johnsonbaugh 95]. The C++ 
implementation code for the methods is omitted, some documentation has been added, 
and the #include statements are not included. This example is not intended to be 
executable, but to emphasize the computation of the various measures that apply to an 
object-oriented software product. 

This example, shown in Figure 7-1, is the design and top-level implementation of a 
software artifact to simulate the measurement of computer performance. The design 
consists of creating two base classes, BenchMark and Computer. Class BenchMark has 
JobA, JobB, and JobC as derived classes. Class Computer has DeskTop and Mainframe 
as derived classes, and DeskTop has WS (Workstation) and PC (Personal Computer) as 
derived classes. A program, Testlt, simulates a computer "running" a benchmark and 
outputting the results of the test. The relationships between the base classes and the 
derived classes are evident in Figure 7-1. 

BenchMark 

ZJ, 
Computer 

JobA JobB JobC r\ 
MainFrame DeskTop 

Z\ 
WS PC 

Figure 7-1: Class Hierarchy Chart 

A partially coded implementation of the Computer Performance example follows: 

const int MaxName = 100; 
const float Tolerance = 0.01; 
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class Test; 
class BenchMark  { 
friend Test; 
protected: 

//  Computer instructions are broken down into categories 
//   by percentage [ expressed as a decimal, 50% is 0.50 ] 
float  alP;     //  Arithmetic/logic instructions 
float mP; //  Memory- 
float  cP; //  Control instruction 
float  ioP;     //  Input/output instruction 
float  ic; //  Executed instruction count 
char  name[ MaxName + 1 ]; 

public; 
BenchMark()  //  base class constructor 
{ 

init(); 
strcopy( name, "?????"); 

} 

BenchMark( char* n ) 
{ 

init(); 
//   includes if-then-else  stmt checking length of n 
//   McCabe's metric  (MCC)  is    2 

} 

void report() 
{ 

//  cout statements to print values of variables 
}    //   MCC = 1 

int okay() // Checks to see if instruction percentages sum 
//   within tolerance to 1.0 

{ 
return fabs(1.0 -(alP + mP + cP + ioP)) <= Tolerance; 

}    //   MCC = 2 

void init_error ()    //  Print error message when invoked 
{ 

//    single cout statement 
}    //   MCC =1 

private: 
void init()     //   Initialize percentages to  0.0 
{ 

alP = cP = mP = ioP = ic = 0.0; 
} 

};     //   ===  end of class BenchMark  === 

class JobA :  public BenchMark { 
//  This instantiation emphasizes arithmetic/logic and 
//  control statements with moderate memory use and low I/O. 
public: 
JobA() : BenchMark( "Job A" )   //   JobA constructor 
{ 

alP =0.50;     cP = 0.20; 
mP = 0.20; ioP = 0.10; 
ic  =   (   float   )   4500301; 
if   (    !okay()    )      init_error; 
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JobC () : BenchMark( 

} 
}; 

alP 
mP 
ic 
if 

= 0.153; 
= 0.577; 
= ( float ) 
( !okay() ) 

// ===  end 

} 
};     //   ===  end of class JobA  === 

class JobB :  public BenchMark { 
//  This instantiation emphasizes arithmetic/logic and 
//  control statements with light memory use and no I/O. 
public: 
JobB() : BenchMark( "Job B" )   //   JobB constructor 
{ 

alP =0.77;     cP = 0.166; 
mP = 0.064;     ioP = 0.0; 
ic = ( float ) 6700909; 
if ( !okay() )  init_error; 

} 
};     //   ===  end of class JobB  === 
class JobC :  public BenchMark { 
//  This instantiation emphasizes low arithmetic/logic and 
//  control statements with heavy memory use & moderate I/O. 
public: 

"Job  C" )   //   JobC constructor 

cP = 0.0059; 
ioP = 0.26; 

10400500; 
init_error; 

class  Computer  { 
friend  TeStlt; 
protected: 
//   cpi  =  cycles per instruction 

//  Arithmetic/logic cpi 
//  Control cpi 
//  Memory cpi 
//  Input/output cpi 

Cycle time in nanoseconds 
char name [ MaxName + 1 ]; 
float costU;    //   Upper bound of cost range in dollars 
float costL;    //   Lower bound of cost range in dollars 

protected: 
Computer( float al,  float c,  float m,  float io,  float 

t,  char* n,  float lbd,  float ubd ) 
{ 

alcpi = al;     ccpi = c;  iocpi = io; 
mcpi = m;  ct = t; 
if  ( strlen(n), MaxName ) strcpy( name, n ); 
else  strncpy( name, n, MaxName ); 
costU = ubd;    costL = lbd; 

}    //   MCC =2 
void report () 
{ 

// cout statements to print cost range, time, and cpi 
values 

}    //  MCC = 1 
};     //  ===  end of class  Computer  === 
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class Desktop:  public Computer  { 
protected: 
Desktop( float al, // Arithmetic/logic 

float c, // Control 
float m, // Memory 
float 10, // Input/output 
float t, // Cycle time in nanoseconds 
char* n, // Name 
float 1, // Lower bound of cost range 
float u ) // Upper bound of cost range 

}; 
:  Computer( al, c, m, io, t, n, 1, u )  {} 
//   ===  end of class   Desktop  === 

class PC 
public: 
PC ( float 

float 
float 
float 
float 
char* 
float 
float 

public  Desktop  { 

al = 1.8, // 
c = 2.3, // 
m = 5.6, // 
io = 9.2, // 
t = 230.0, // 

n = "PC", // 
1 = 800.0, // 
u = 14500.0) // 

} // 
Desktop ( al, c, m, io, t, n, 1, u ) 

===  end of class   PC  === 

//  Personal Computer 

Arithmetic/logic 
Control 
Memory 
Input/output 
Cycle time in nanoseconds 
Name 
Lower bound of cost range 
Upper bound of cost range 

{} 

class WS 
public: 
WS ( 

public  Desktop  { 

float 
float 
float 
float 
float 
char* 
float 
float 

al = 
c = 
m = 
io = 
t = 

n = 
1 = 

1 
1 
2, 
5, 
90.0, 
"WS", 
4500.0, 

,3, 
7, 

■ 1, 
8, 

} // 

u = 78900.0] 
Desktop ( al, c, 

===  end of class 
m, 

// 
// 
// 
// 
// 
// 
// 
// 
io 

//  Workstation 

Arithmetic/logic 
Control 
Memory 
Input/output 
Cycle time in nanoseconds 
Name 
Lower bound of cost range 
Upper bound of cost range 

, t, n, 1, u )  {} 
WS  === 

class Mainframe 
public: 
Mainframe ( 

float c 
float m 
float io 
float t 
char* n 
float 1 
float u 

} 
// 

Computer( 

end of class 

public  Computer  {  // Mainframe 

float  al = 1.2, //  Arithmetic/logic 
1.5, //  Control 
3.6, //  Memory 
3.2,      //  Input/output 
50.0,    //  Cycle time in nanoseconds 
"$$$",    //  Name 
310000.0, //  Lower bound of cost range 
20000000.0) // Upper bound of cost range 
al, c m, io, n, 1, u )  {} 

Mainframe  === 
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class Testlt  { 
//   Computes the response time in nanoseconds of running 

benchmark b 
//   on computer c,  where 
//        rt  =  response time, 
//        ct  =  clock cycle time, 
//        ic  =  instruction count, and 
//        cpi  = clock cycles per instruction. 
//   The response time in nanoseconds is computed as 
//        rt  =  ic * cpi * ct . 
float rt; 
void results ( Computer c,  BenchMark b ); 

public: 
Testlt ( Computer c, BenchMark b ); 

}; 

int Testlt :: TestIT( Computer c, BenchMark b ) 
{ 
float  al_rt,  c_rt,  m_rt,  io_rt; 
al_rt = b.alP * b.ic * c.alcpi * c.ct; 
c_rt = b.cP * b.ic * c.ccpi * c.ct; 
m_rt = b.mP * b.ic * c.mcpi * c.ct; 
io_rt = b.ioP * b.ic * c.iocpi * c.ct; 
rt = al_rt + c_rt + m_rt + io_rt; 
results (c, b); 

} 

void Testlt :: results ( Computer c, BenchMark b ) 
{ 
//   cout  statements denoting computer and benchmark 
b.report(); 
c.report(); 

}      //  MCC  =1 
//    ===  End of Class Testlt  === 
//    =====  End of Example  ===== 
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7.2.1 Computation of Measures for C++ Example 

The computer performance example in Figure 7-2 has two base classes, BenchMark and 
Computer. 

BenchMark 

n, alP, mP, cP, 
ioP, ic 

report 
init_error 
okay 
BenchMark(—) 

JobA 

alP, mP, cP, 
ioP, ic 

okay 
init error 

JobB 

alP, mP, cP, 
ioP, ic 

okay 
init error 

JobC 

alP, mP, cP, 
ioP, ic 

okay 
init error 

Computer 

alcpi, ccpi, mcpi, 
iocpi, ct, name, 
costU, costL 

report 

Computer(—) 

MainFrame 

al, c, m, io, t, 
n, 1, u 

Computer(-) 

WS 

al, c, m, io, t, 
n, 1, u 

DeskTop(-) 

DeskTop 

al, c, m, io, t, 
n, 1, u 

Computer(-) 

PC 

al, c, m, io, t, 
n, 1, u 

DeskTop(-) 

Figure 7-2: C++ Example Class Diagram 

CMU/SEI-95-TR-002 39 



For the taxon method, McCabe's cyclomatic complexity (MCC) is calculated for each 
method in each of the classes. The base class BenchMark has four methods, which are 
inherited by three objects formed from this base class; so we need only consider these 
four methods for the base class BenchMark. Similarly, base class Computer has two 
methods, which are inherited by two objects formed from this base class; so we need 
only consider these two methods for the base class Computer. Testlt is a program that 
accesses the two classes to instantiate the objects. The results of the calculation of MCC 
are summarized below. 

Class 

BenchMark 

Computer 

Method Measure 

report MCC = 1 

init_error MCC = 1 

okay MCC = 2 

Benchmark MCC = 1 

report MCC = 1 

Computer MCC = 2 

For the taxon class, the measure Size2 proposed by Li and Henry [Li 93] is calculated 
for each class in the software system. Recall that Size2 is the total number of attributes 
and methods for each class. The results of the calculation of Size2 are summarized 
below. 

Class 

BenchMark 

Computer 

Measure 

Size2 = 6+4 = 10 

Size2 = 8+2 = 10 

For the taxon inheritance, the measure is DIT (Depth of Inheritance Tree) proposed by 
Chidamber and Kemerer [Chidamber 94]. The results of the calculation of DIT are 
summarized below. 

Class Measure 

BenchMark DIT=1 

Computer DIT = 2 
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For the taxon coupling and uses, the measure is CCM (total Count of the number of 
accesses to other Classes, accesses by other classes and the nuMber of cooperating 
classes) proposed by Chen [Chen 93]. The results of the calculation of CCM are 
summarized below. 

JobA, JobB, & JobC access BenchMark count is 3 

DeskTop and Mainframe access Computer count is 2 

PC and WS access DeskTop count is 2 

Computer and BenchMark are accessed by Testlt count is 2 

CCM = 9 

For the taxon system, the measure is SCI (the total number of edges in the hierarchy 
graph for the system) proposed by Abreu and Carapuca [Abreu 94]. From Figure 7-2, 
the total number of edges in the hierarchy graph for the system is seven. (Simply count 
the arrow heads.) 

SCI = 7 
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7.3. Ada95 Example (Car Dashboard Instrumentation) 

This example is based on the sample application program provided by the New York 
University GNU Ada Translator system (GNAT) [Schonberg 94]. The Ada95 
implementation code for the methods is omitted, some documentation has been added, 
and the with and use statements are not included. This example is not intended to be 
executable, but to emphasize the computation of the various measures that apply to an 
object-oriented software product. 

This example, the hierarchy of which is portrayed in Figure 7-3, is the design and top- 
level implementation of a software artifact to simulate some of the instruments on an 
automobile dashboard. The design consists of a base class, Instrument; and derived 
classes, Speedometer, Gauge, and Clock. 

I 
Graf_Gauge 

Clock 

/ \ 

Chronometer Accu_Clock 

Figure 7-3: Ada Example Class Hierarchy Chart 

A partially coded implementation of the Car Dashboard Instrumentation example 
follows: 
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package Instruments is 

Root Type      

type Instrument is tagged record 
Name : String (1..14) := " 

end record; 
procedure Set_Name (I: in out Instrument; S: String) 
procedure Display_Value (I: Instrument); 

Speedometer 

subtype Speed is Integer range 0..85; --mph 
type Speedometer is new Instrument with record 

Value : Speed; 
end record; 
procedure Display_Value (S : Speedometer); 

Gauges 

subtype Percent is Integer range 0..100; 
type Gauge is new Instrument with record; 

Value : Percent; 
end record; 
procedure Display_Value (G: Gauge); 

type Graf_Gauge is new Gauge with record 
Size : Integer  := 20; 
Full : Character  := '*'; 
Empty: Character  := ' . ' ; 

end record; 
procedure Display_Value (G: Graf_Gauge); 

Clocks 

subtype Sixty is Integer range 0..59; 
subtype Twenty_Four is Integer range 0. .23; 
type Clock is new Instrument with record 

Seconds 
Minutes 
Hours 

end record; 

Sixty := 0; 
Sixty := 0; 
Twenty_Four  := 0; 
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procedure Display_Value (C: Clock): 
procedure Init (C: in out Clock; 

H: Twenty_Four := 0; 
M, S: Sixty := 0) ; 

procedure Increment (C:in out Clock; Inc:Integer :=1); 

type Chronometer is new Clock with null record; 
procedure Display_Value (C: Chronometer); 

subtype Thousand is Integer range 0..999; 
type Accu_Clock is new Clock with record 

MSecs : Thousand  = 0; 
end record; 
procedure Display_Value (C: Acc_Clock); 

end Instruments;  -- End Class Instruments -- 

Program to test the Class Instrument -- 

procedure Test_Instruments is 
type ACC is access all Instrument'Class; 
package DashBoard is new Gen_List(Ace); use DashBoard; 

procedure Print_DashBoard (L: List) is 
LI : List  := L; 
A  : Ace; 

begin 
while LI /= Nil loop 
A := Element(LI); 
Display_Value(A.all); 
LI := Tail(LI); 
end loop; 

New_Line; 
end Print_DashBoard; 
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»> Objects  <« 
Speed  : aliased Speedometer; 
Fuel   : aliased Gauge; 
Oil, Water : aliased Graf_Gauge; 

Time 
Chrono 
DB 
begin 

Set_Name 
Set_Name 
Set_Name 
Set_Name 
Set_Name 
Set_Name 
Speed.Value 
Fuel.Value 
Water.Value 
Oil.Value 
Init (Time, 

aliased Clock; 
aliased Chronometer; 
List  := Nil; 

(Speed, 
(Fuel , 
(Water, 
(Oil  , 
(Time, 
(Chrono, 

45 
60 
80 
30 

12, 15 

"Current speed"); 
"Fuel tank"); 
"Water "); 
"Oil "); 
Current time"); 
"Chronometer"); 
--mph 

--% 

00);  --hrs, mins, sec 
Init (Chrono, 22, 12, 56); 
DB := Append (Speed'Access, Append (Fuel'Access, 

Append (Water'Access, Append (Oil'Access, 
Append (Time'Access, Chrono'Access))))); 

Print_DashBoard (DB); 
end Test_Instruments; 
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7.3.1 Computation of Measures for Ada95 Example 

This example, whose hierarchy chart is portrayed in Figure 7-4, has base class 
Instrument having three derived classes.  The program Test_Instruments instantiates 
the objects to simulate the functions of the instrument panel. 

r 

Instrument 

Name 
Tag 

Set_Name 

DisplayJValue 

Clock 
Gauge 

Speedometer 
Tag,H,M,S 

Value 
Value 

Display_Value 

Init 

Increment 

Display_value 
Display_Value 

\ r                      \ 

Graf_Gauge 

' 

v 

Chronometer Accu_Clock 

Size, Full, Empty MSecs 

Display_Value Display_Value Display_Value 

Figure 7-4: Ada95 E: sample Class Diaj jram 
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For the taxon method, McCabe's cyclomatic complexity (MCC) is calculated for each 
method in each of the classes. In Figure 7-4, we observe that the base class Instrument 
has two methods and the derived classes, Speedometer and Gauge, inherit these 
methods; so we need only consider the two methods. The derived class Gauge has a 
child class Graf_Gauge, which adds no new methods. Derived class Clock inherits 
Display_Value and adds two new methods, Init and Increment. Testjnstrument is a 
program which accesses the base classes to instantiate the objects. The results of the 
calculation of MCC are summarized below. 

Class 

Instrument 

Clock 

Method 

Set_Name 

DisplayJValue 

Init 

Increment 

Measure 

MCC = 1 

MCC = 1 

MCC = 1 

MCC = 1 

For the taxon class, the measure Size2 proposed by Li and Henry [Li 93] is calculated 
for each class in the software system. The results of the calculation are summarized 
below. 

Class 

Instrument 

Speedometer 

Gauge 

Clock 

Graf_Gauge 

Chronometer 

Accu Clock 

Measure 

Size2 = 2+2 = 4 

Size2 = 1+1 = 2 

Size2 = 1+1 = 2 

Size2 = 3+3 = 6 

Size2 = 3+1 = 4 

Size2 = 0+1 = 1 

Size2 = 1+1 = 2 

For the taxon inheritance, the measure is DIT (Depth of Inheritance Tree) proposed by 
Chidamber and Kemerer [Chidamber 94]. The results of the calculation are 
summarized below. 

Class Measure 

Instrument DIT = 2 

Gauge DIT=1 

Clock DIT=1 
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For the taxon coupling and uses, the measure is CCM (total Count of the number of 
accesses to other Classes, accesses by other classes and the nuMber of cooperating 
classes) proposed by Chen [Chen 93]. The results of the calculation of CCM are 
summarized below. 

Speedometer, Gauge and Clock access Instrument count is 3 

Graf_Gauge accesses Gauge count is 1 

Chronometer and Accu_Clock access Clock count is 2 

CCM = 6 

For the taxon system, the measure is SCI (total number of edges in the hierarchy graph 
for the system), proposed by Abreu and Carapuga [Abreu 94]. From Figure 7-4, the total 
number of edges in the hierarchy graph for the system is six. (Simply count the arrow 
heads.) 

SCI = 6 
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8. Conclusions and Recommendations 

The object-oriented paradigm is a model that represents the complexity inherent in 
large software systems. It measures complexity's many features (discussed by many of 
the authors in our bibliography) to enable the software engineer to monitor the software 
development process. It measures even those features that are in direct conflict with 
each other, such as execution time and memory space, efficiency and understandability, 
and coupling and cohesion. 

There is, however, currently no single measure that captures all the features of an 
object-oriented software product. Based on this fact, a better approach to measuring 
object-oriented software products is to isolate the features of the product that are of 
concern to us and develop a suite of measures that measures these features. The two 
examples in Section 7 show that a suite of measures is easily calculated from the design 
documents. Most measures of methods also require actual computer code, or at least 
pseudocode. McCabe's measure, for example, was calculable from the incomplete code 
in the example, but Halstead's effort measure would have required executable code for 
its calculation. 

The suite of measures we have used also has the property of consistency. For these 
measures, lower values were better than higher values. However, a few of these 
measures were 'weak' for the purpose used. McCabe's cyclomatic complexity measure 
was chosen as a member of the suite because it was calculatable from the incomplete 
code; however, the measure produced only values of one and two (indicating a lack of 
granularity). McCabe's measure is acceptable for identifying logic structures in 
programs but poor for measuring program size. Some authors have suggested 
augmenting the suite to include a size measure, a complexity measure, and an 
input/output count measure for the methods of a class, as opposed to collecting a single 
measure. 

There are several key concepts captured in this report. First, once an analysis and 
design paradigm is chosen and the software products specified, a measurement plan 
should be put into action. The plan should identify 

• the features of the product that require measurement, 

• a process for selecting the appropriate measures, 

• the data to be gathered, and 

• consistent rules for calculating each measure. 

Second, the object-oriented paradigm is continually evolving; the need for new measures 
to represent these added features is still there. 
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